
(d) (i) One block of a 2^{4} experiment is given by:

$$
b c, a b, b d, a b c d, a c d, d, a, c
$$

Identify the confounded effect.
(ii) Show that all the main effects and interactions of a 2^{3} experiment form a set of mutually orthogonal contrasts among treatment means.
(d) What is local control? How is this used in Latin square design and randomised block design?
(f) Give a layout of a strip plot design with 5 treatments A, B, C, D, E with 3 rows and 4 columns. Write down the corresponding ANOVA table for this design. $3+2$
2. Answer any two questions:
$10 \times 2=20$
(a) What is missing plot technique ? Describe briefly how you can estimate the missing observation corresponding to treatment C and block I in a randomised block design with three treatments A, B, C and four blocks I, II, III and IV.
(b) (i) Discuss partial and complete confounding with example. Construct a 2^{6} design confounding ABC, CDE, ADF and their generalized interactions (Give principal block only)
(ii) Discuss Yates' algorithm for obtaining factorial effect total for a 2^{3} experiment.
(c) How does a split plot design differ from a factorial experiment? Give the layout of a split plot experiment in a Latin square design. How do you perform whole plot analysis in split plot design ? $2+2+6$
(d) Give in detail the analysis of a 2^{3} factorial experiment conducted in randomized blocks.

